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INTRODUCTION

The light emitted from missile trails represents an exceedingly

complex phenomenon. A large variety of physical theories have been of-

fered to explain this luminosity. Since particulate matter is generally

found to some degree in missile exhausts an understanding of the inter-

action of particulate matter with the atmosphere may provide a key to

the disentanglement of the particulate matter contribution. The thesis

here is that if a particular zone of luminsoity is observed to move in

a certain fashion which is inappropriate to the movement of particulate

matter then the invoking of the particulate matter mechanism cannot be

accepted.

In an effort to provide a means for checking the particulate matter

hypothesis this study has been made. It attempts to systematically obtain

the mathematical formulae for the velocity and distance behavior of

particles of different mass and initial velocity ejected at various

heights in an exponential atmosphere. Its purpose is essentially that

of an engineering type study for application to the above cited missile

phenomena. Hence for clarification specific examples are calculated in

detail for the various cases. Also a more extensive tabulation for

horizontal motion vWith drag is given in an appendix.

By use of the work contained herein it is hoped that the particulate

matter component in missile trail luminsoity may be more carefully check-

ed. This study represents a small effort in a complex over-all program

of evaluating the missile trail radiation.



if particulate matter is released in the upper atmosphere, at a

point, with a common initial speed in all directions, the drag resistance

of the atmosphere will slow down the particles in such a manner that the

space loci of the advancing particles, with a common varying speed, will

describe successively expanding aspherical surfaces. That is to say,

the surfaces of constant speed will be strongly dependent upon the vary-

ing density, p(h), of the upper atmosphere, which is essentially expon-

ential,

p p(h) = p exp(-h/Ho) (i)

for different scale heights H
0

The aerodynamic drag, D, on a particle of speed v and resisting

area A, moving through such a density field, is defined, in terms of a

drag coefficient CD' by the standard formula

1 2D = C D A pv (2)

acting in such a manner as to directly oppose the motion of the particle.

The force of gravity can be taken to be constant, W = mug, in a downward

direction.

The combined action of aerodynamic drag and gravity on the particle

is to impart to the particle an acceler.ion a defined by the Newtonian

equation of motion
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ma= D v We (3)

v h

where the veloclity vector v is defined by the equations

a = dv/dt (4)

and

- dr - dh
v= - e e h  (5)

where eh is a unit vector in the upward direction and er is a unit vector

in the radial direction, out from the axis of symmetry, the vertical axis

through the initial release point r = 0, h = h
0

Equation (3) is equivalent to the two componential equations of

motion

d2r D drm =- --- (6a)

dt2  v dt

and

d 2h D dh
2 d W (6b)

dt 2  vdt

where

2 2 2(7

v (dr/dt) + (dh/dt5 (7)
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The initial conditions of motion, when t 0, are defined by the

statements:

r = 0, dr/dt = v sin cop s (8)
h = ho, dh/dt = v° cos CPo 0 - Yo <  }(

the parameter o selects a specified set of particles issuing from the

apex of a cone of generating angle OP, measured from the vertical line

through r = 0, h = h 0
0

If the times, t, of observation are very short so that the quantity

gt is small compared to vb, one may neglect the gravitational action in

describing the motion of the particles. In this event, with no gravity,

there are three principal cases of motion with the following differential

equations and initial conditions:

Case I: Horizontal Motion with Drag

dvH/dt = - C VH2 (9a)

vH = dsH /dt (9b)

vH Vo, sH =0, when t =0 (9c)

where

I (CDA/m) p0 exp(-ho/Ho) (10)
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Case II: Upward Motion with Drag

dvu/dt = - C exp(-su/Ho) vu 2 (Ila)

vU = dsu/dt, sU = h - h (llb)

v U = Vo sU =0, when t =0 (1ic)

Case III: Downward Motion with Drag

dvD/dt = - C exp(sD/Ho) VD 2  (12a)

vD = dSD/dt, sD = h - h (12b)D D o

vD = vo, sD = 0, when t = 0 (12c)

When a constant gravity field is introduced into the description of

motion, as it should be, two additional cases may be added to our sched-

ule:

Case IV: Upward Motion with Drag and Gravity

dvv/dt - - C exp(-sv/Ho) v7 2 g (13a)

V = dsV/dt ,  sV = h h 0 (13b)

vv = 0, sV = 0, when t = 0 (13c)

5



Case V: Downward Motion with Drag and Gravity

dvJdt = - C exp(&H 0) + g (14a)

ds /dt, ho - h (14b)

Voil 0, when t =0 (14c)

An analysis of these five cases is made in this report. The sixth

case of horizontal motion (initial release, that is) with drag and

gravity is not discussed, nor is the general problem, described by

Equation (3), discussed. In order to illustrate the use of the formulae,

as they are developed in each successive case, application is made to a

release of particles at 71 Km, with an initial speed v = 2500 cm/sec0

The numerical examples serve as a means of comparing the various features

and salient points of each case.

In the formation and interpretation of missile trails, it is perti-

nent to know at what altitude one can expect a specified drop of initial.

velocity in a specified time, and to know the penetrating distances sHP

SUP and sD' In the Appendix, a table of results is given for a given

set of initial velocities in the horizontal direction, for Case I.

In closing, it is noted that this paper is an introductory engineer-

ing study only, revealing points and topics worthy of further study. The

fact that the illustrations used are couched in the language of missile

trails should not obscure the evident fact of the generality of this
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study and its applicability to the solution of problems of the relative

motion of bodies in an exponential atmosphere, with gravity.
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I. HORIZONTAL MOTION WITH DRAG

In this section we consider Case I, motion in a horizontal direction

with drag only. The dynamic equation of motion

dv H/dt = VH2 vH = ds H/dt (9a)

with the initial condition

vH = VOP when t = 0 (9c)

by direct integration yields the velocity formula

(1/vH) - (1/vo ) = C t1l (15)

which can be written in the forms

vo/VH  1 + C v tH  (16a)

C- (-.-- (16b)
votH vH

On the other hand, since vH = dsH /d' 7quation (9a) can be written as

dvH/dt = - C vH (dsH/dt) (17)

which has the integral

vH = v0 exp(-C sH) (18)

8



since vH= 0, when s = 0. That is to say,

V = exp(C sH )  (19)

so that

s =v ( /v) (20)
H C o H

By using

1 - (V/VH) - 1 (21)

from Equation (16), we can express sH in the significant form

Sn(v/vH) Cv t (22)SH = -(v o/H) - YJ VotH = C on~ oH)22

Equation (22) defines a formula for the horizontal displacement, sH' of

the particle in the time t = t , when the velocity ration is vH/Vo .

It is interesting to note that, for a fixed value of VH/Vo, this

formula for sH states that the displacement sH is proportional to v0t,

the displacement without resistance, when C = 0 (i.e., when C 0, say).
D

Hence, Equation (22) can be written as

- n(v/vH) (23)

S -= (Vo/VH) - i
HC=0

9



this ratio is illustrated in Figure 1. Note that when v/v ° = 1/2, the

displacement with drag is 69% of the displacement without drag, i.e.,

SH/S H = 69%; when vH/v° = 1/10, then SH/SH = 25.5%. Lastly, it

is important to note that v /v° can have any value from unity to zero:

from Equation (16a), as vH/v° - 0, we have tH - c; and, from Equation

(18), as vH/v° - 0, we have sH - O . Practically, of course this is

meaningless, since we must use the time, tH, in a restricted interval

(since we neglect the effect of gravity).

In closure of this discussion on horizontal motion with drag, notice

that we can find the altitude h required to have sufficient air resist-

oHante to slow the particle down to a given fraction VH/v °0 of its initial

speed in a given specified time tH; this is done by combining the two

equations for C, Equations (i) and (16b), namely,

o (CDA/m) p exp(-h /H ) = 1 VH - (24)

2 D 0 0 0 v ot H v H /

and solving for the density function,

p(ho) = Po exp(-ho/Ho ) (25a)

in terms of votH, and v v in the form

p(h) 2 - 1) (m/CDA) (25b)
vot1

H vH

10
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Velocity, with Drag only on Particle.
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The right hand side of Equation (25b) is known as soon as tH and vo/vH

are selected for a particular release v and particle, m/CDA; hence

p(h0 ) is known. To find h one can use Equation (25a) for specified

values of p0 and H0 , which can be found in a standard model atmosphere

handbook,. One can use the ARDC Model Atmosphere tables directly,

entering with p = p(h ) and reading out ho, the altitude corresponding.

In the Appendix will be found results of calculations for particles of

radii 2 i, .5 i and .034, for CD = 1 and CD = 2, for a range of initial

velocities v , from v0 = 102 cm/sec to v = 5 x 105 cm/sec.

Equation (25b) defines a formula for the atmospheric density, p(h ),

required to slow a particle down from an initial speed v0 to the value

vH, in the time tH. Equation (25a) can be used to determine the corre-

sponding altitude h (when the ARDC Atmosphere Model tabulation is not0

available).
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II. UPWARD MOTION WITH DRAG

In this section we consider Case II, motion iL-1 an upward direction

with drag only. From Equation (11), we assert that v , the velocity

upwards, is defined by the differential equation

dv U/dt = - C exp(-s U/H0) vU 2, v. = su '/t s U h o 2a

with the initial conditions

v= V o = 0, when t = 0 .(26b)

Since

dv I dt = (dvu/dsU (dd) = vU (v/s)(27)

we can express Equation (26a) in the alternate form,

(1/v U) (dv U/ds) U C ex (- U H0 (28)

which has the integral

In(v U/v) o C H 0[1 - exp(-s U/H 0 )] (29)

Solving for the displacement s U/H 0  in Equation (29), we see that

exp(-S /H) An 1 - (v /V) (30)

13



Since the left hand side of Equation (30) is never negative, it is clear

that vo/v U is restricted to the range

I - (vo /V) exp(CHo) (31)

for all distances sU - 0. In other words, the minimum value that vu/V°

can attain is exp(-CHo), that is,

(Vu/vo)mi n = exp(-CHo) (32)

When vu/V ° -+ exp(-CHo) we see from Equation (30) that exp(-su/Ho ) - 0,

which means that su/H ° -+ o. As the particle moves upwards it is slowed

down to the asymptotic vU = v0 exp(-CH ) as it recedes away from the

initial point.

Equation (30) defines a formula for the vertical accent of a particle,

SUP in terms of the speed ratio vo /v U U exp(CHo).

It is an easy matter to compare the displacements in the horizontal,

sH/Ho, and vertical, su/Ho, directions under the condition that the speeds

are equal,

VH/V° = Vu/V --exp(CH) (33)

To this end we refer to Equation (19) for vH/Vo,

vii/v ° = exp(oCsH) = Vu/V0, from Equation (33)

14



--1

and substitute v /V = exp(CsH) in Equation (30); the resulting equation

is

exp(-su/H) = 1 - SH/H0, 0 = 5H = H 0  (34)

Equation (34) is a formula relating SH/H° and S u/H for the condition

that vH/v0 = vu/V o .

To find the time required for the particle to slow down from v

to vu, in ascending the distance sU above h0 , we turn to Equation (29)

and write it in the form

dsu/dt = v0 exp (-[1 - exp(-su/Ho)] CHo) (35)

which can be solved for the differential of time, dt, in the form

dt =-Aiexp -[I-exp(-su/Ho) ] CH ds (36)

Integration yields the formula

tu =Lexp(CH) U exp[-CH° exp(-z/Ho)] dz (37)
0 0

Equation (37) is a formula for the time t = tU required for the particle

to ascend a distance sU.
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To find tU in terms of vU/Vo, we again turn to Equation (24) and

let

= I - exp(-su/H )] CHo = In(v/v U )  (38)

so that

dsU dsU

d /dt = C exp(-su/H ) = C[lI - (t/CH)] ds

hence

ds /dt v exp(- ), from Equation (35) (39)U ( /CHo) ] dt o

We rewrite Equation (39) as

H
dt = -o exp() d (40)

v CH - 4

where t = In(vo/vu) so that =0 when t =0 and v U = vo .

By integration of Equation (40) we obtain the formula

H o exp(x)tu- =o - oSH - dx, Zn(Vo/Vu) =5 CHo (41)

0 0 0

Equation (41) is a formula for the time t = tu required for the particle

to slow down from v to with v o= exp(-CH )

16



We now take up a brief study of this formula, Equation (41), for

tu. For one thing, we can show that tu -* aD as v 0/v U -* exp(CH 0)

from Equation (41) (see Figure 2)

H CH

(vv)*ep(H t~ lm 0r o exp(x) dx
0 U ox(C 0) 0 0 0

H fCHO- d H
= i Urn 0x - r2 l.Ii E =co (42)

E-0 0 0 0 0 E - 0 0

That is to say, it takes an infinite time for the particle to reach its

minimum velocity, v0 exp(-CH ) as would be expected intuitively.

0 0

In order to evaluate t U for v U/V 0= exp(-CH 0) we set

CH 1- x =y (43)

in Equation (44) and make the appropriate reductions; we find that

tU = H0exp(CH) C 0 e2.L.X2) dy (44)
U v CR f,

0 C0

where

i n(v o/v U, v U =v 0 exp(-P), O P < CH 0  (45)

If we now let

P = (1-j) CH, 0.9 0 (46)

17
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so that

v o/V= exp[(l-p) CH.] (47)

then Formula (44) takes the alternate form

H CH
t= exp(CH°) o exp(-v)dy (48)

In the handbook by Jahnke and Ende, Tables of Fundations , page 1,

there is defined the function

OD
-Ei(-x) = exp (-y)dy (49)

which can be used to evaluate t U . For note that since

x2 g(x) dx = g(x) dx - g(x) dx

xI1 x I  x 2

we can write Equation (48) in the form

H
t U = - exp(CHo) KI-Ei(-4CH)] - [-Ei(-CHo)]) (50)

Jahnke and Ende give only a small graph of the function -Ei(-x); reading

from this graph one can construct the following table of values (Table i)

19



TABLE 1

VALUES OF -.Ei(-x)

-Ei(-x) = f0 exp(-y) y- dy

x -Ei(-x) x -Ei(-x), x -Ei(-x)

0 OD.6 .45 1,2 .15

.1 1.70 .7 .40 1.3 .12

.2 1.20 .8 .27 1.4 .11

.3 .90 .9 .24 1.5 .10

.4 .70 1.0 .20 1.6 .09

.5 .55 1.1 .16

On the other hand, the formula for t U in Equation (41) can be ap-

proximated analytically when

.9n(v o/v U) «< OH 0(51)

for then

t nvo vU exp(x) ( ±-± .) (52)
U Cv CH.

0 o 0

so that

t i (exp(x) + [exp(x)ICH I (x1.))o

(53)

v I v U«< exp(CH 0 )

20



Simplification of Equation (53) results in the equation

t C [(vo/Vu )-ll-(I/CHo) + Cv CH/vn(5v)
o o 0

or

Si(v/U)] + I ([(v /Vu) In(vo/Vuj v/v.) +/v (55)tu= Cv 0 (oV ) I +V Cv H OH° [ o oU - V/u)

Equation (54) is a formula for the time tU required for the ascending

particle to slow down from v0 to vU, vo/V U << exp(CH0 ).

If we now compare tU with tH by requiring that v0 /v 1 = vo/u, it is

seen that Equation (54) is equivalent to

tU = t + -(V/V [n(v/v)l + (vH/v

(56)

vo/VH = vo/vU  exp(CH )

It is clear that if v o/vH ? e then tU > tH. It can be shown, however,

that tU > tH even when I =< vo/vH =< e; for let vo/vH = exp[l-p(VH/Vo)],

0 < p < 1, so that In(v o/VH) = l-(vH/vo) then in Equation (56)

t = tH + CR.' IVH/Vo] (i-P.) > tH  (57)

21



In other words, for the same drop in speed it takes a longer time in

ascending than in moving horizontally, tU > tH when v O/v = vo/v ,

exp(CH0 ). This is of course to be expected intuitively and serves as

a check on our solution.

Equation (54) can be written in the form

t = [I-(l/CH°)] tH + (/CH )(v°/VH)(SH/H 0

(58)

(vo/vH) = (vo/v U) << exp(CH o)

In order to clarify the previous discussion and to illustrate the

use of the formulae, we consider

Example 1

We take a particle of radius .51k = 5 x 10-5 cm, with mass
=1-12 -

m 1.84 x 10 cm and resisting area A = 7.85 x 10-9 cm so that

(m/CD A) = 1.2 x 10 . 4 gm/cm2  with CD = 2 (59)

We stipulate that

(vO/vHO = (vo/vu) = 10, with v 0 2.5 x 103 cm/sec (60)

so that vH = vU = 250 cm/sec; we also set tH = 10 sec. The required

density is

22



2 v0  in2 -4
P(h°) 2 -t -- 11 - 2. x 9 x (1.2 x 10 4 )

0 v ot H v lH\C DAI 2 5l10
4

= 8.64 x 10 - 8 gm/cm3  (61)

The ARDC Model Atmosphere tables give h = 71 km = 7.1 x 106 cm as the0

corresponding attitude. The constant C has the value

S(CDA/m) 8.64 x 10-8 = 3.6 x 10"4 /cm (62)

Sp(h 1.2 x 10 - 4

To find the scale height H at h = 71 km we look up in the ARDC manual
0 0

and select two adjacent entries: hI = 71 km, p1 = 8.64 x 10-8 gm/cm 3 ,

h2 = 75.5 km, p2 = 4.32 x 10-8 gm/cm we then use p(h) = po exp('h/Ho)

for each of these and form the quotient

(01/02) = exp[(h 2-hl)/Ho ] (63)

hence, with (pl/'P2) = 2, (h2-hl) = 4.5 kin, we have

exp(4.5/Ho) = 2 = exp(.693); H = 6.49 km. (64)

With H = 6.49 km, we have

CH = (3.6 x 104 )(6.49 x 105) 5 233.64 (65)

Since in(v/0 /v = U n(10) = 2.303 << 233.64 = CHO, we have (v/vU) « exp(CH)

so that it is legitimate to use approximate formulas. We need, however,

the horizontal distance sH; we use

23



s L(volVH) VotH = 23 (2.5 x 104) = 6394 cm (66)

from Equation (22). Hence in Equatiot, (58)

8sH

t 1 tH + 2 7-0  = (1- .00428)0+
U = H C H H233.64)

(0) (6.394 x 103

2.5 x 10O
3 I

which works out to be

t = 9.9572 + .10947 = 10.06667 sec (67)

Further, from Equation (34), we have

exp(-s U/H) = - (sH/H) = 1- .009846 = .99016 (68)

so that s U/H = .009887 and sU = 6417.75 cm

In summary: if v° = 2.5 x 103 cm/sec, v/V =v Vo/vU = 10 int = 10 sec,

and if m/CDA = 1.24 x 10-4 gm/cm2 , C = 3.6 x 10 /cm, HO = 6.49 x 10 cm,

then p(h0 ) = 8.64 x 10
-8 gm/cm 3 , h = 7.1 x 106 cm, 8H = 6.394 x 103 cm,

sU = 6.418 x 103 cm, tU = 10.0667 sec.

Example 2 (Gegenbeispiel)

We now take up an illustration in which our formulas fail: with

5the same partice as in Example 1 we now let v = 5 x 10 cm/sec and put

24



the same velocity drop ratio requirement as before, VH/vo = vu/v° = 1/10

-10 3in tH = 10 sec. We find that p(ho) = 4.32 x 10 gm/cm and h = 99 km.

-6The constant C is now 1.8 x 10 /cm; the scale height H is now
0

4.48 x 105 cm, and CH = .806. Since In(v o/v) = in(10) = 2.302, we

see that (v 0 /vu)> exp(CHo) in violation of the minimum velocity drop

ratio restriction. That is to say, at the height h = 99 km it is im-0

possible for the particle, beginning with an upward velocity

v° = 5 x 105 cm/sec to slow down to a speed vU = (1/10)v = 5 x 104 cm/sec:

the minimum value of (vulv) attainable is exp(-CH ) = exp(-.806) = .4466.

At such a high altitude (h = 99 kin) and with such an initial speed
0/

(v° = 5 x 105 cm/sec), the drag resistance can only slow it down to the

value vU = .4466 v.

If gravity acts on the particle it will halt it in time (if v0 is

not an escape velocity). In the next section we bring the gravity into

play, in combined action with the drag, for particles released in an

upward direction.

25



III. UPWARD MOTION WITH DRAG AND GRAVITY

In this section we consider Case IV, motion of a particle with an

initial upward velocity, with drag and gravity combined, acting to slow

it down. The upward velocity is now designated by

= (dsv/dt), sv = h - h 0 (69)

The dynamic equation of motion is expressed in Equation (13) as

(dvv/dt) - - C exp(-sv/Ho) vV 2 
- g (70a)

with the initial conditions

vv = Vo, sv = 0, when t =0 (70b)

To integrate Equation (70a), we begin by replacing dvv/dt by vvdvv/dsv,

and multiplying through by dsv; we find that

2
vv dv v =- C vv 2exp(-aV/Ho ) dsv - g dsv (71)

or

d(g s + 1 2) =C v 2 d[exp(- s/H)]

which can be written as

d(g sv + . VV2 ) = 2CH O(g sV + vV 2 ) d[exp(-sv/Ho)]

- 2CH° g sv d[exp(-.sv/H)] (72)

26



In order to simplify the appearance of Equation (72) we let

U s v + v (73a)

w = exp(-sv/H, dw = - (w/Ho) d s (73b)

we now have Equation (72) in the form

du = 2CH u dw - 2CH g sv dw (74)

The relationship dw = - w d( sv/Ho)reduces this to

du = - 2C u w d sv + 2C g w sV dsV

which can be written in the standard form of a linear first order ordinary

differential equation:

(du/dsv) + 2C w u = 2C g w sv  (75)

An integrating factor of Equation (75) is

u = exp(f 2C w dsv) = exp(-2CHow) (76)

so that

d [u exp(-2CHow)] = 2C g w sv exp(-?CHow) (77)

is an equivalent canonical form of Equation (75). Note that w = i and
2

u = (1/2)v when sV = 0, (t = 0), so that by integration of Equation (77)
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we obtain an integral of motion, namely,

0 200

2C egp-2 w) - v exp(-2CH 0 ) ds(8
0

Note that

fsvw s exp(-2CH 0w) d = - Hof sV exp(-2CH 0w) dw
00 10

H w dx
s exp(-2CH w) 2C-5 exp(-2CH x) - (79)

so that Equation (78) r~duces to

u exp(-20H w) =_ v 20 exp(-2CH + x(2Hw

+ S; H wexp(-2CH X) -x (80)
0 f, 0 K

or, finally,

1 = 2- exni-2CH (-W)~ + g s2 o L0' V

+ g H exp(2CH W) exp(-2CH X) - (81)
0 0 1i x
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1 2

But u = g s + vV , so that Equation (81) implies that

i

= 2 rexp -2CH(-W - w g H exp(2CHoWv)I exp(-2CHox)-d (82a)
2 20 (1 0 ( 1f- 20 dx

Wv

where

wv
w = wv = exp(-sv/H), (dwv/dt) = - W- vV  (82b)

0

Equation (82) defines a formula for the velocity of ascent under the com-

bined action of drag and gravity in terms of the ascent distance sv.

As a check on this formula, it can be easily shown that it does

satisfy the dynamic equation of motion Equation (70a).

With gravity and drag acting on the particle, in its ascent, it is

possible that the particle will slow down to a halt, at which point

v = 0, momentarily, before the particle then begins to descend, under

the action of gravity. We designate this vV = 0 condition by a sub

asterisk on wv, that is w = w, when vv = 0. From Equation (82a), with

v = 0, we see that w, is defined by the integral equation

2
ex(.C~X ) dx o 0

exp(-2H x = exp(2CH w = exp(-s,/Ho) (83)
0

Our problem to find w, in terms of v0 2/2gH0 and 2 CHo . In Equation (83)

if we set x = l-y, our definition of w, becomes
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2
-w* exp (2CHoy) l - o (84)

0 l-Y 2gH 0

Note that

1 - w* = 1 - exp(-s*/H ) = s/H 0 + ... , if (s*/H 0 ) << 1; (85)

so that y is defined between D and (s*/H0) << 1, i.e., if condition

Equation (85) holds, a binomial expression is valid on (l-y) "I in

Equation (84). Indeed, with (s*/H0) << 1, Equation (84) becomes

v s,/H +
0 0 exp(2CHoy) (I + y + ... ) dy

2gHo o

1 1 Y=s*/H 0T exp(2CHoY) + 2 y(2CHoy) (2CH Y-l) (86)
CH°  (2CH0) 2 o "

With

a= (/2CH ), = 2Cs,, (s,/H) 1<< , (87)

Equation (86) can be written as

2
V 0  2 2 2

o = a exp(*)-l + a t, exp(Q*) - a exp(Q*) + a
2gH0

(88)

at << 1

The inequality a* << 1 permits a reduction of Equation (88): multiply

Equation (88) through by t, and rearrange terms, in the manner
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2

. = ,+ (a,)2] exp(*)- -
2 t. exp(*) + a2 t, (89)

and since (a,) 2 << at* we infer that it is valid to write Equation (89)

as

2
2gH a exp(Q*) - a - a exp(*) + a2
2H0

= a lexp(*)-l] I a 2 [exp (t*-

or as

2
V
v0 a(l-a)[exP(*)-l a << 1 (90)

0

By simply rearrangement of terms in Equation (90) we obtain a formula

for exp(*),.

2V1 o
exp( *) = 1 + 0(-a) 2gH °  (91)

and since = 2Cs*, a = (I/2)CHo, we infer that

2 C o 2 2

exp(2Cs,) = 1 + 2CH . 2gH o (s*/H0 ) << 1 (92)

Equation (92) defines a formula for the maximum height, s. = s , attained

by the particle in its ascent, under the combined action of gravity and

drag, provided (s*/H 0 ) << 1.
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We pause at this point to consider

Example 3

We take the data of Example 1: v = 2.5 x 103 cm/sec,

H = 6.49 x 10 cm, C = 3.6 x 10 4/cm, CH = 233.6; then witho 0

2g = 980.616 cm/sec

2 (2CHo) 2 2

2gH .00491, 2CH -1 2gH 2.29924 / (93)
0 0 0

hence in Equation (92)

exp(2Cs*) = 1 + 2.29924 = 3.2992 = exp(l.194)

so that

(s*/H o ) = (I.194/2CH) = (1.194/467.2) = .002555 << 1 (94)

The criterion (s*/H0 ) << 1 is amply satisfied so that it is legitimate

to use the formula for s, in Equation (94). Hence, the maximum ascent

distance which the particle can attain is

s, = .002555 H = 1658.19 cm (95)

when the initial upward velocity is v = 2.5 x 103 cm/sec and the

altitude is ho = 71 km, under the combined action of drag and gravity.

If gravity alone were to act on the particle, it would be stopped in

t = v /g = 2500/980.616 = 2.549 sec and it would ascend a distance
g o
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Sg (1/2)v t = 3186.25 cm. Hence the effect of drag combined with the

gravity, is to cut the distance from s = 3186.25 cm to s, 1658.19 cm,

or to reduce the free ascent by 1528.06 cm. Recall from Example I that

the particle ascends a distance sU = 6418 cm in tU = 10.0667 sec while

reducing the velocity from v = 2500 cm/sec to v = 250 cm/sec, under
0 U

the action of drag alone.

Example 4 (Gegenbeispiel)

We take the data of Example 2: v0 = 5 x 105 cm/sec,
6o

C = 1.8 x 106 /cm, h = 99 km, H = 4.48 km, CH = .806; then

2 (2CHo)2 2
-2 = 284.543, 0 2gH°  1208.163

2gH 0  2CR -1 2gH0

hence

exp(2Cs*) = I + 1208.163 = 1209.163 = exp(7.0977)

so that

(s*/Ho) = (7.0977/1.612) = 4.403 > 1 (96)

this value of (s*/H) = 4.403 is a violation of the restriction that

(s,/Ho) << 1: Equation (92) cannot be used in Example 4.

In working Example 3 we did not consider the time required to

reach the maximum ascent. This points up the need to determine the time

t v required for the particle to slow down from v0 to vv while ascending
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a distance sv under the combined action of aerodynamic drag and gravity.

To find t we need dt which we can define by use of Equation (82):

H
dtv dwv, w = exp(-sv/H) (97)

At least theoretically, we have t v defined by the integral of Equation

(97), namely,

tv = H f WVv , wv = exp(sv/Ho ) (98)

where vv is defined by Equation (82a).

Equation (98) defines a formula for the particle to ascend a distance

sV against the combined actions of aerodynamic drag and gravity.

On the other hand since vv = ds v/dt, we can write dt = dsv /vv and

then express tv in the form

tV = v--sV (99)

In either case, by using Equations (98) or (99), it is necessary to have

vv as a function of sv or wv = exp(sv/Ho). We, therefore, turn our

attention to the reduction of the integral in Equation (82a):

34



I= exp(-2CH x) dx ep1 -w ep(CY)d (10
'w0 x e(20H 0 ) f V ex C 0y 1- (00

Note that

1I w~ v exp(-sV/H ) sV/Ho + if s v/H 0«< 1

so that, in Equation (100)

I ep(-2CH0) V 0 [exp(2CH 0y)](l+y) d

0

=exp(-l/a) 'cx(l-a)[exp(tV)-l1' (101)

by analogy with the deve lopment for w , where

2CR ' v V 'Cv c~ = (s 1K /H 0« 1; (102)

0

note that

2CRO w +1 w = t+
o V z v+~ wc~+.

(103)

2CH (l-wV) 2CH 1

When these abreviations are used in Equation (82a) our formula forv

becomes
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2 2 Byv
Sv exp(_) 2gH exp(_-V) a(l-a)[exp(tv)-l] , j-<< 1 (104)v 0 v O  vv

0

Set

2 2gH0  
1

Y -2 (i ), -2CH
2 a- ((105)

V 0
0

then Equation (104) can be written as

(Vv/v 0 ) 2 = exp(-tV) [l-IT2[exp(v)-l]], (sv/Ho0) << 1 (106)

Taking a square root of both sides of Equation (106) we see that

vv = (dsv/dt) = v0 exp(-CsV) (i + T2) T 2 exp(2Csv) (107)

so that by simple algebra

d- exp(Cs) ds (sv/Ho) << 1
F~o I 2

- exp(2CsV )
r2V

and by integration

1 P~v exp (Cx)

TV  - dx, (Sv/Ho) << 1 (108)
rv° ° l+y2 - exp(2Cx)

2

1
If we now set u = exp(Cx), - du = exp(Cx)dx, then Equation (108)

reduces to
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i e x p (Cs v

du , (S /H) < < 1 (109)
V Cvr OT 2 Va0

r2

which integrates at once to yield the formula

F-i yexp(CsV)
tV [CV sin -' v) sn-' (S /H) << 1 (110)

where

2 2gH 0
2 (1-a), 2CH

v 0
0

It should be noted that Equation (91) can be written as

exp(2Cs) 1 + (1/r) (2 +I)/T 2

so that

~Texp (Cs.)

e x p ( C s . = o r -= i ( i i )

the implication is that, if tv = t. when sv = s and vv = 0, then in

Equation (110)

-O s in ( = cot r13 (sV/H) « 1. (112)
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Equation (110) defines a formula for the time, tv, it takes for a

particle to ascend a distance sV with a velocity drop from v0 to V

provided s v/H0 << 1, with drag and gravity opposing the motion of the

particle. Equation (112) defines a formula for the least time required

for the particle to reach a position where it comes to a halt momentarily,

vV = 0, at a distance s, above the starting point.

Example 5

We take the data of Examples l and 3: h = 71 km, v = 2.5 x 103

-4 o

cm/sec, C = 3.6 x 10-4 /cm, H° = 6.49 x 10 cm, 2CH ° = 467.2, s V s =

1658.19 cm, exp(2Cs,) = 3.2992, exp(Cs,) = 1.81638, (2gHo/ov) = 203.6528,

2a = (I/2CHo) = .0021404, 1-a = .99786, a(l-a) = .0021358, y2 = .4349616,

.65952, cot=1  22
.65952, cot-T = .98756, 1+ry = 1.1979, / 2 = .550563

sin(.583044(r)); voy = .593568, (i/Cv0y) = 1.684726; (y/Jl+2 ) exp(Cs,) =

(.550562)(1.81632) = 1 = sin(l.57079Lr)); hence

-i

t = t = 1.684726 (1.57079 - .583044) = 1.6641 sec cot 1 y .98756
V Cvoy .59357

We conclude that it takes t, = 1.6641 sec for the particle to

ascend to its maximum displacement s, = 1658.19 cm, where the particle

momentarily comes to rest vV = 0, under the combined action of drag and

gravity, beginning with a velocity v = 2.5 x 103 cm/sec upwards. As a

point of comparison, to ascend a distance s, = 1658.2 cm with an initial

velocity v° = 2500 cm/sec and be acted upon by gravity alone, it takes

.7836 sec.
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We now let vo/VV = 10 and seek the distance sV , From Equation

(106) by simple algebra we derive the formula

V=/Vo +r (s /Ho) << 1 (113)

V (v /V 0) 2+ T V

Equation (113) defines a formula for the distance of ascent, sV, of a

particle under the combined action of drag and gravity, in terms of the

velocity ration v /Vo, provided sV << Ho .

2 2 2
Thus with 1+- = 1.434016, (v /v ) + = .01 + .4349616 = .444916,

we have exp(Csv) = \3.225139 = 1.7958 = exp(.58545) so that (sv/Ho) =

(.58545/CH ) = (.58545/233.6) = .0025062 < 1, s V = 1626.52 cm; that is

to say: the particle ascends a distance s V  1626.52 cm against drag

and gravity while dropping its speed from v = 2500 cm/sec to

vV = 250 cm/sec. To find the corresponding time, tv, we use Equation

(11i, wherein CsV = .58545, exp(Csv) = 1.7958, rexp(Csv)/ lY =

.988701 = sin(81 .379) = sin(l.4203 r ), (C/yl+y ) = .550563 =

sin(.58304 r)), hence tV = 1.684726 (1.4203 = .58304) = 1.4105 sec;

it takes tV  1.4105 sec for the particle to lose 90% of its initial

speed, to go from v = 2500 cm/sec to vV = 250 cm/sec, working against

drag and gravity, in going a distance sV = 1626.52 cm.
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IV. DOWNWARD MOTION WITH DRAG

In this section we consider Case III, motion downwards with drag

only. We designate the velocity vector downwards by vD and define it

by the differential Equation (12a),

dvD/dt = - C exp(sD/Ho) vD 2 , vD = dSD /dt D= h o- h (l14a)

and have it satisfy the initial conditions

vD =v , D = 0 , when t = 0. (114b)

-Following the techniques used previously, we find that

(i/vD)(dvD/dsD) = - C exp(sD/Ho) (115)

is an equivalent form of Equation (114a) and that

In(vD/vo) =- [exp(sD/Ho)-l] CH (116a)

and

(vD/v) = exp -[exp(sD/Ho)-l] CHO) (116b)

are first integrals.

The equations in Equation (116) defined a relationship between the velocity

ratio vD/vO and the descent distance sD for a particle descending into an

exponential atmosphere under the action of drag alone.
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By simple rearrangement of terms we transform Equation (116) into

exp(sD/H) = 1 (v (117)
D 0 C Oe~/vD)(17

0

It is of basic interest to compare the values of the displacements sH)

SU, and sD at the instants their corresponding speeds are equal, that

is when v/V = vo/vu = vo/v D < exp(CHo).

From Equation (19), In(v o/v) = CS , so that in Equation (117)

oH

exp(so = 1 + sH (118)
0

since exp(-su/H = 1 - H/H ), from Equation (34), it follows that

exp(sD/Ho) = 2 - exp(-sU /H0 ),

(119)

(vo/VH) = (vo/vD) = (vo/vU) _ exp(CHo)

In Figure 3 is shown a comparison of the displacements s u/H and s D/H

with s H/H for the condition of equal speeds.

To find a time dependency relationship, we begin with Equation (116b),

vD = (dsD/dt) = vo exp(-[exp(SD/Ho)-l] CHO (116b)

and express the element of time, dt, as

dt = i~ exp ([exp(sD/Ho)-l] CHO) sD (120)

0
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Figure 3. Comparison of Upward and Downward Distances s U/H 0and

SD/Hop with Drag only, with Horizontal Distance sH o

for Equal Velocity Ratios, vH/ No v UIN v 0/H.0
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which can be integrated directly, yielding the formula

tD = [exp(=CHo)/Vo] exp[exp(Q/H ) CH ] d (121)
0

To find an alternate formula for tD we let

= [exp(s D/H )-l] CHo = In(v o/vD) (122)

in Equation (116b), so that

dsD dsD
(dt/dt) = C exp(sD/H) -d- = C [1 (/CH)] - (123)

hence, by solving for ds /dt in Equation (123) and using the velocity
D

relationship in Equation (116b), one finds that

1 1d-- = v exp(-t) (124)(dSD/dt) - C I + /CH dt o

which implies that

H
dt = o exp)d (125)

v CH

and that

H In(v/VD) )
t exp(y dy (126)
D v0 I CH +y

0 0 0

since = 0 when t = 0, from Equation (122).
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Equations (121) and (126) are formulas for the time, tD, of descent,

against aerodynamic drag, in terms of the distance sD' in the former,

and in terms of the velocity ration drop VD/Vo, in the latter.

In the event that vo/VD << exp(CHo ) the kernel of the integral in

Equation (126) can be expanded in a series and integrated termwiee, thusly,

tD c ) v (v
i -v in C2 (° --<< exp(CHo) (127)D = C v oD v CVo0 CH ov D  v D  vD ) I vD 0

Equation (127) is a formula for the time, tDP required for the particle

to slow down from a downward velocity v to the value vD, provided

Vo/vD << exp(CHo). To appraise this formula suppose that v O/V = Vo/VH

then, from Equation (15), the first term on the right hand side of

Equation (127) is

t H=

so that

1 1 v vo vI  v vo
tD t- n + 1 - D ,S =0D 

< < exp(C ) * (128)
D H Cv 0CH 0v D vD vD D vH0

An alternate form of Equation (128) is

t H v - V D I vo v
t t - t In _-o 1 + - , o << exp(CH o) (129)D H CH I _ VD vD VH
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Example 6

We take the data of Example 1: h = 71 km, v0 = 2.5 x 105 cm/sec,

H = 6.49 x 105 cm, C = 3.6 x 10"4 /cm, CH = 233.6; we chooseo o

v OV = Vo/v H = 1/10, In(vo/vD) = 2.30259, sH = 6.394 x 103 cm,

a H/H = .009852; hence

exp(sD/Ho) = 1 + (SH/H) = 1.009852 (130)

so that a D/H = .0098035 and sD = 6362.47 cm (which compares with

sU = 6418 cm and sV = 1628.6 cm) is the distance the particle descends

against drag alone, in reducing the downward velocity from v = 2500 cm/sec0

to vD = 250 cm/sec. To find the time, tD, we use Equation (127): with

vo/VD = vo/v H we have tH = 10 sec (see Example 1), or else note that

Cv = .9, vo/V D -I = 9; further v o/v D £n(v o/V) = 20.72331, so that

tD = 10 - .055761 = 9.9442 sec , (131)

The time required for the particle to descend the distance sD = 6362.47

cm while going from v° = 2500 cm/sec to vD = 250 cm/sec, is t D=9.9442 sec

(compare with tH = 10 sec, tU = 10.0667 sec for the condition voD

v/V = vo/H).
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V. DOWNWARD MOTION WITH DRAG AND GRAVITY

In this section we consider Case V, motion downwards with drag and

gravity. In many respects much of the previous analysis is followed

anew; however, with gravity now acting to accelerate the particle while

the atmospheric drag tends to slow it down, the resulting motion has

different features so that the analysis is not without interest.

We designate the downward velocity by vand define it by the dynamic

equation in Equation (14):

dv Idt - C exp(s /H ) v + g (132a)

where

v =ds/dt, s = h - h (132b)

with the initial conditions

v , = 0 when t = . (132c)

The differential equation for ;0. in Equation (132), differs from that

for vV in Equation (70a) by having -Sv/H replaced by 1 o and - g by g.

We are led by analogy to replace -H by H and -g by g in the formula

Equation (82a) for vV to write down by inspection a formula for

2 v2 exp[2CHo(1-w ] + 2gH exp(-2CH exp(2l ex X -- (133a)
0 0Vo 0 0 X
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where

= when s= 0 , t =0 (133c)

We verify that Equation (133a) defines a velocity v hat satisfies the

equation of motion by substitution.

Also since : I as t - 0 it is obvious that v - v° in Equation

(133a), so that the initial condition on v is satisfied.

Equation (133a) defines a formula for downward velocity, . of a particle,

subjected to the combined action of drag and graity, in terms of the

descent distance

To find the time t of descent we can use either

H
dt - dw from Equation (133b), (134a)

or

dt = (d ), (134b)

as definitions of an increment of time, dt, and by integration obtain the

formulas
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or

~d (l35b)

The formulas in Equation (135) define the time ;&Jor the particle to

descend a distance g&.against drag and with gravity; the function O-is

defined by Equation (133a).

When x is replaced by 1+y in the integral in Equation (133a), the

formula for v Lbecomes

2 2
v =v exp[-2CH (w -1)1 G(w (136a)

G(w)=1-+-(2gH /v 2 ) ? di exp(2CH Y)~ ,w exp(s /H) (136b)0 0 0 l0 ~8
0

When s «H 0the function w ecomes

w =exp(s /H )=1 + (s /H )+ (137)
e1 ~ 0 o~-

so that

w /H +.

;511exp(2CHy -+y 0 exp(2CH 0y)I[l-y + .1dy (138)
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If

:= (1/2CH) , =2Cs., a (s /H) <<l
00

and

x2 = (2gH0/v 2 (l + a) (139)

then it can be shown that

(vV)2 = exp(-. + X2 [l-exp(- ] =

(140)

2+ (1 - x2) exp(-), (s /H) << 1

That is to say

(v /v0 ) 2 (- ) exp (2C ) /H )« 1 * (141)

Equation (141) defines a relationship between the downward velocity,

and the descent distance,,. for a particle under the combined action

of drag and gravity, !,< H0 .

To find the time t when a << H0 , we set

u = exp(Cs) , (du/dt) = C .u (142)

so that
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dt du 1 du 1 du (143)

C C TVo- Cv \X 2X 2 U2 + (l-X 2) 0 (l / 2 . + U 2

When dt is integrated we obtain two formulas:

1 [s inhl - sinh'l X < 1, << 1, (144a)

- << ''

Scosh cosh" H (144b)

Equation (144) defines a formula for the time, t required for the particle

to descend a distance j wherein s&<< H0, when the downward motion of the

particle is subiected to the restraint of drag and the acceleration of

gravity.

Notice that Equation (141) can be expressed as

exp(C 1 2 when X 2 land-> X, -<< 1 (145a)e(COS- = -( Vo2 -T 2 whn <1adVo

-v.I v0  0

or as

e 2 X2 . 1 when X2 > 1 and X, W< 1 (145b)

X2 -(v /Vo) 2  Vo o
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If a << 1, then X2 = (2gH/v 2 )a (g/C 2 2CH 1;

further, recall that

C (CDA/m) p exp(h /H ) from Equation (10).

The results in Equation (145) imply that when /H << 1, if X2 < 1 then

the minimum value of v /v is X; on the other hand, if X2 > 1, then
(w0

v can any value in the range (0,1), i.e., 0 <v 0 < 1.

The equation in Equation (145) defines the descent distance, z in terms

of the velocity rat ioi Jvo, provided :,JH 0 << 1.

An anomalous behavior of the velocity v /v becomes apparent upon

examination of Equation (141):

V v =X ,,l + ((1-X /X2) exp(-2C , o) « 1; (4)

if

(ll-X 2 1/X2) exp(-2c1-"'< 2f/X , such that 2f/X << 1 (148)

then

= + f + ... , when exp(-2Cs) = (2fX/Ji. 2 I) '  < 1. (149)

0
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In other words

v = whet. < (s /H) << 1 , (150)

The velocity of descent, ;., remains essentially at the constant value

IT9C for a finite segment of its descent, from an altitude h with an

initial velocity v0; the parameter C varies of course with h0 since

I0

C =- (CDA/m) po exp(-ho/Ho).

In this connection, if we assume that dvjdt = 0 for a given range of

values O we can set dvjdt in Equation (132), the dynamic equation of

motion; we find that

2 = (g/C) exp(- JHo) (d;]dt) = 0 (151)

now ifs /H << I then exp(-jHo) 2 1 and Equation (151) gives

- .; 0 
'&

%// in agreement with Equation (150). Indeed if one states that

dv dt = -8' and that exp(sHo) = 1- 8",then

- +' = - C(I-8") g ,.so that, if v _7, , (152)

then

v ii/c= =g+8IC(l-) - 7/ g l+8 1] (153)
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that is,

w .5"(154)

(1 + 'g)(1 - 2. l (g . (

Equation (154) expresses the percent error in assuming the velocity,

a constant, / g, in terms of the variation, 6', in the rate of

change of 9 and of the variation 5" of the descent, As a closure to

this discussion on the behavior of the particle for constant value of

vjone can look at the situation from a physical point of view: the

change in potential energy of the particle goes into friction, into

heating the atmosphere, by the frictional work done; that is to say,

we have

s2
mg(s j m C exp(s /H)v 2 ds (155)mg }.-di )  in Vconst"

so that

5. - S./1
20 - mm j - exp(s /H ) < 1 (156)

const o xp( Ho)- exps /Hmin

agreeing with the previous values of v= constant.

Example 7

3
We take the data of Examples 1, 3, and 5: v = 2,5 x 10 cm/sec,

h = 71 km, C = 3,6 x 104 /cm, H = 6.49 x 105 cm, (1/a) = 2CH = 467.2,
0 0

53



2gH0 o/v = 203.653, a = .0021404, X= .43683, X = .66093, (X/w ) =

.88072, (XAI ') = sinh (.79447), (l/CP) = 1.681127. In this instance,

2 < 1 so that we must choose v;Jv > X = .6609; but this is not as re-

vealing as assigning a value to ti.-n Equation (144a) and finding the

corresponding value of : To this end we take 1. 10 sec and solve

for s

sinh" ( exp(Cs))= Cv X S+ sinh"  = 6.74285 (157)

so that exp(C, = 480.24398 = exp(13.08205):

hence

(13.08205/3.6 x 10+4) = 3.6339 x 104 cm, (sH) .05599.<< 1. (158)
;p0

We infer that it is legitimate to use these approximation formulas; we

conclude that in t = 10 sec, the particle will descend 3.6339 x 104 cm,

assisted by gravity but opposed by aerodynamic drag. Compare this dis-

placement with the distance the particle would go in 10 sec under 3ravity

action alone, namely, 7.40308 x 104 cm. The speed v at t = 10 sec is

defined by Equation (141) wherein

(v/V )2 = 2 + (1X 2 ) exp(-2c ffi

.4368314 + [.5631686/(480.244)2] = .436831 + ... (159)
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so that V v) = X = .66093, ;= 1652.3 cm/sec. Equation (159) in-

dicates that vJv is now insensitive to the value of s9< Ho . Notice

that if we take = 6,748.9 cm, then exp(-C )= exp(-2.4296) =

min mmi

(.8807196/10), so that exp(-2Cs.- [(.880719) 2/100] = (1/100)(X 2/(l-x)

= [(101/100)(X 2 /-X 2))] _ (X2 /(1-7X ), hence, by reference to Equation (141)

where we have exp(-2c0 = [((Xv) 2 /(1-x 2  -(x 2 /1-:) we see that an

error of less than 10% in v /v occurs when = 6748.9 cm is used

instead of , 36.339 cm a 5.3 . A similar discussion reveals
min

4
that = (1/10)H = 6.49 x 10 cm causes a variation in the value of

max

v /v of less than 10%. Hence, for 1,In the range .0675 km <
o&-0

.649 km the variation of ;= 1652.3 cm/sec is less than 10%. Equation

(144a) is used to determine tm.n' the time to descend to s6, =

min min

6748.9 cm beginning at h = 71 kin:

n 1.0811272 sinh1(10) - .79447] = 3.7048 sec (160)

since (W/4 ) exp(Csmin) = 10; further for t corresponding to

&mm'i max

a 6.49 x 104 cm, with (X/1j-X ) exp(Csj .88072 exp(23.364)

exp(23.237) = sinh(23.930); hence
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t = 1.681127 (23.930 - .79447) = 38.894 sec (161)
max

The time period of constant velocity v = 1652.3 cm/sec persists from

t -3.705 sec to t = 38.894 sec, or for a period of 35.189 sec; during

35.189 sec of descent at a constant speed 1652.3 cm/sec the particle falls

a distance of 58,143 cm (notice that when we computed/ - %&., we
max mn

obtain 64,900 - 6,749 58,151 cm!!).
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